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Abstract

Petri nets augmented with timing specifications gained a wide acceptance in the area of perfor-

mance and reliability evaluation of ccmplex systems exhibiting concurrency, synchronization, and

conflicts. The state space of time-extended Petri nets is mapped, ,nto its basic underlying stochastic

process, which can be shown to be Markovian under the assumption of exponentially distributes

firing times. The integration of exponentially and non-exponentially distributed timing is still one

of tb:_.major problems for the _m_ysis and was first attacked for continuous time Petri nets at the

cost of structural or analytical restrictions. We propose a d/screte deterministic and stochas_c Pctri

net (DDSPN) formalism with n.o impos_ stn_ctural or analytical restrictions where transitions c_n

fire either J:n zero time or according to arbitrary firing times that can be represented as the time

to absorption in a finite absorbing di_cT_te time Markov chain (DTMC). Exponentially distributed

firing tim_s are then approximated arbitrarily well by geometric distributions. Deterministic fir-

ing time_s are a special csse of the geometric distribution. The underlying stochastic process of s

DDSPN is then also a DTMC, from which the; transient and stationary solution can be obtained by

standard techniques. A comprehensive slgorithm and some state space reduction techniques for the

analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions,

which removes a major obstacle for 1;he analysis of di_rete timc models.
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t'_hls_:esearchwas_upportedinpartbytheNationalAe_onautlcsandSpaceAdministrationunderNA$A Contra_t

No.NASI.194_0whilethvsecondauthorwasinresidcncea_theInstitutvforComputerAppllca_.ionsin._cio.nceand

Engine_rlng(ICASF-LNASA LangleyResearchCexJter.Hampton,VA 2,%81-0001.



1 Introduction

Petri nets (PN) [13] proved to he a powerful graphical and mathematical modeling tool that allows

to describe and analyze complex systems exhibiting concurrency, synchronization, and conflicts.

The ability to model timed and probsbilistic behavior is essential in the _eld of performance and

reliability evaluation. This need leads to various different extensions of the PN formalism, where

the class of stochastic Petri nets (SPNs) gained the widest acceptance. In SPNs, firing time delays

are specified by probability distributions associated to transitions. SPNs are often classified as

continuous or discrete time, depending on the type of firing time distributions and on the underlying

stochastic process.

Deterministic end stochastic Petri nets (DSPNs) [3] represent the most important continuous

time approach where transitions can fire either in zero time or after a constant (deterministic)

or exponentially distributed time delay. The initial definition of DSPNs imposed the structural

restriction that concurrent deterministic activities cannot be present. This problem was theoretieaUy

solved in [10]. However, the solution is not feasibJe in practice because it leads to a state space

explosionwhen a largernumber of concurrentdeterministicactivitiesistobe considered.

Di.scretctime stochasticPetrir_ets[12]belonginsteadtothe:discreteapproach,where transition

Sing timesarespecifiedby geometricdistributionswhich approximatethe exponentialdistribution

arbitrarilywellin d_.scretetime. Other approacheshaving an underlyingdiscretetime stochastic

processhave been presentedin[15](Timed Petrlnets)and in [11](GeneralizedTimed Petrinets),

but they doesnot achJe.vethe modeling power ofDSPNs.

The mixture of deterrr,inisficand stochasticfiringtimesstillimposes severeproblems on the

quantitatiw,analysisofatime-extendedPN, sincethestarespaceneedstobe generatedaztdmapped

onto _he basicunderlyingstochast,icprocess.Our work attacksthisproblem by adoptinga pure

discrete.timeapproach.However, conflictsand confusionsamong transitionfiringsaremore likely

_o occur in discretethan in continuoustime,sincetransitionsare allowedto fireonly at certain

discreteinstantsoftime. Thus, simultaneousfiringattemptsofalltransitions,_ncludingthe timed

transitions,cma takeplace. The detectionof the setsof transitionsinvolvedin conflict_and con-

fusionsisa preconditionforthe correctspecificationofprobabilisticfiringweightsresolvingthese

situations.This i:san importantand oftenlyneglectedissueespeciallyfor discretetimemodels.

In [14],Discretetime Deterministicsad $tocha_ticPetri___.s(dtDSPNs) were introducedwhere

trmlsitionsfireeitherinzerotimeoraftera cortstantorgeometricallydistributedtlmedelaywithout

any structuralre_3tricticn.The deterministictime delayisthen modeled as a specialcaseof the

geometricd_stribution.In dtDSPNs, theproblem ofconflictsand confusionsisxelaxedto a ceI_ain

_dcgreeby an unconventiorta]approach.The sequentlalizationofsimultaneouslyfireabletimed iron-



sitions is not enforced, which leads to the elimination of confusion situations for timed +_ransltio_s.

The drawback of this approach is that a dtDSPN model can generate states which are not covered

by the classicalPattinet theory.

A more generalapproach was proposedin[5]withDiscreteTime M_rkovian SP.V_(DTMSPNs),

where firingtimedistribu'donsarespecilledby arbitraryfinite_bsorbingDTMCs. Ithas beenproven

in [5]thatthe underlyingstochasticprocessof a DTMSPN isa DTMC, providedthatthe modeler

detectsand resolvesallconflictsand confusionsmanually,possiblya very dif_culttask. This

drawback leadin [8]to the developmentof a new method forthe automaticdetectionof conflicts

and confusionsapplicableto alltypesof s_och_ticPetrinets. This appro_h isindependentof

structuralPN propertiesand issolelybased on the statespace generationof a given model, so

that only actuallyoccurringconflictsand confusionsare detected. This isisnot the casefor

the structuraltestsemployed in continuoustime approaches,which are based oz necessary,not

saf_cient,cozlditions.Thus. structuraltestscan lead to an overspeciflcationof a given model

resultiz,,_in_.more difficultcorrectinterpretationofobtainedresultsmeasures.

'_nework pre_entedinthispaper combines the r_.ultsof [14],[5]_aud [8]_whileremoving the

mentioned dr_,wbacksof [14]and [5].We defined_crete dete_'ministicand stocha._ticPetr_ ne_s

(DDSP_Ns). In DDSPNs, transitionscan _re eitherin.zerotime or aftera time delayspecifiedby

arbitraryfiniteabsorbingDTMCs without any sl;ructuralrestriction.Firingtime dlstributlonsof

a DDSPN includethe geometricand the deterministicdistributionas s.specialcase. Any other

discretedistributionthatc_n be expressedby a finiteabsorbingDTMC can be freelydefined,such

as the discreteuniform distribution.We ad_pt the genera|approach forthe automatic detection

of conflictsand onfusionsfrom [8]and integra_,eitintothe solutionmethod for zb.eanalysisof

DDSPNs. Togetherwiththe solutionmethod, a new algorithmforthecomplex and non-triviMstate-

space generationispresented,mapping a DDSFN onto a DTMC, from which again tb.etransient

and stationarysolutioncan be obtainedby standardtechniques.Final}y,some statespacereduction

techniquesforDDSPNs are proposed to relaxthe inherentproblem ofstatespaceexplosion.

Section2 definesuntlmed PNs. Section3 introducest,he discretei_ringtime distributionsof

DDSPN transitions.Sections4 and 5 p,..sentthe complete DDSPIN forrnMismitselfand the cor-

respondingstatespace,reductionmethods. Numericalresultsarcshown in Section6,followedby

concludingremarks inSection7.



2 The PN Formalism

We recall the (extended) PN formalism used in [8]. See also [4] for more details on PNs with

marklng-dependent arc multiplicities. A PN is a tuple (P_ T, D-, D +, D*, >-, g,/fl0l) where:

• P is a finite set of places, which can contain tokens. A marking/_ E iNIPI defines the number

of tokens in each place p E P, indicated by/_ (when relevant, a marking should be considere,!

a column vector). D-, D +, D*, and g _re _marking-dependent', that is, they are specified as

functions of the marking.

• T is _ finite set of transitions. P N T = 0.

• 'vp e P, Vt E T,¥/_ E iNIPI, D_4(/_) e IN, Dp+,,(/z) e IN, and D_.,(/_) E IN are the multipllclt]es

of the input arcfrom p to t, the ontput arcfrom t to p, and the in_bitor arc from p to *, when

the marking is/z, respectively.

• )- C T x T is an acyclic (pre-sdection) priority relation,

• Vt E T,V/_ E ]N1PI,gt(/_) G {0,1) is the 9uardfor t in marking/_.

• /_[0]_ ]NIP1 is the initial marking.

Plies and transitions are drawn as circles and rectangles, respectively. The number of tokens in

a place is written inside the place itself (default is zero). Input a_ad output arcs have an arrowhead

on their destination, inhibitor arcs have a small circle. The multiplicity is written on the arc (default

is the constant 1); a missing arc indicates that the multiplicity is the constant 0. The default value

forguardsisthe constantI.

Let f.(/_.) be the set of transitions enabled in marking/_. A transition t _ T is enabled in marking

/_if,and only if,itsguard evaluatesto I,itsinpu_and inhibitorarc conditionsare satisfied,and

no othertransitionwith pre-selectionpriorityoverI_isenabled(thisiswelldefinedbecause :,-is

_cyclic):

t • o(g,(_)= 1)^ (vpe e.z¥,(_,)< ,,^ I,o,.,(_,)> _,,v z),.,(_)= o)) ,'_(v,,e e(,).,, _ _).

A trans]tiont e g(#) can fire,causinga change to marking A4(t:/_),obtained from p by

subtracting the input bop D_,_(_) and adding the output bag D_t(i_ ) to it:

,_(t,,) = _ - D:,(_) + O:..,(_,)=, + O..,(,O,



where D = D + - D- is the incidence matrix..M can be extended to its reflexive and transitive

closure by considering the marking reached from # after firlng a sequence of transitions. The

teachability set is then given by

8 = {U : _v e T* A U = Ad(o',P[°I)},

where T" indicates .the set of transition sequences. The reachability graph is (8, A), where A contains

an arc/a_p' iffp E 8, _ E T, and/a' --=.M(_,ju).

3 Discrete Time Phase Distributions

Firing times of transitions in DDSPNs are modeled by discrete time phase distributions (DTPs,_.

Definition 3.1 A DTP is represented by _ finite absorbing d_crete time Markov chain

(DTMC) {Xi_[i E IN} where

• 6 > 0 is tile underlying constant time-step.

• X_ E ! = {n,n - 1,...,0}, the finite state space of the DTMC. Each state corre-

sponds toapossibledistributionofthe r_mainingfiringtime(RFT) fora transition.

• Vk E I,Pr{Xo = k} istheinitialprobabilitydistribution,such that_,kalPr(X0 ---

k)=l.

States I \ {0} are transient. State 0 is absorbing and represents the case that a phase

reached zero and that the corresponding _ransitlon is allowed to fire. D

Two additionalsymbolic DTP sta_es,whose sojourntimes are zero,b and a, are introduced.

The symbolicstateb (forbegin)representstheinitialprobabilitydistributionofa DTP. SinceDTPs

willbe:used formodeling RFTs of transitions,a second symbolic statea isneeded to represent

unambiguouslythe casewhen a transitionisdisabledand no definitephase i,_specified.

Specialcasesofa DTP areforinstancethegeometric,constant,and the uniform distribution.

In the followingwe willshow how thesediscretedistributionscan be representedby DTPs. From

now on, the states of I will be referred to as phases, to make a clear distinction between DTP states

and the overall state space of a DDSPN.

Geometric Distribution

The g._ometric distribution, Geom(a,w) with probability _ ¢/(0,1), approximates the exponential

distribution in discrete time arbitrarily well as itn unit-step w > 0 decrease6. The probability ma&_



function (pmf), cumut._ive probability di6t.ribu_ion function (CDF _.

variable X "-, Georn(a,w) are then given by

• pmf:

• CDF:

and expectation of a random

a(1 - a)'-' if i e 1N+, where _'+ = {1,2,3, ...},px(/w) = 0 otherwise.

I- (1- if•> o,Fx(z) = 0 otherwise.

• mean: _ (_.verage delay)

px(i_l t-_(x)

0 w 2w ._ 4w 0 w 2_ _w

pmf PDF

FigureI:X ,-_Geom(0.5,w).

Fig. 1 shows the pmf and CDF of X ~ Geom(0.5,w). The DTP representation of"Geom(_t,w)

depends on its unit-step _o, defined as an arbit,'ary non-negative integer multiple, w = c6,c E ]IV,+, of

theconstantb_ic underlyingtime-step6 > 0ofallDTPs. For example,two geometricdistributions,

Ge_)m(l[5,_')and Geom(4/5, 4_),havedifferentDTPs but the same mean valueof56. Fig.2 shows

the DTP repr_entationsof X _- Geom(a: _) and X _- Georn(a.,4_). The statesof a DTP (or

phases)arerepresentedby nodes and the probabilisticstatetransitlonsby labeledarcs.

c,0m(o_}

l -¢_

Figure 2: DTP representations of geometrlc distributions.

Constant Diwtribution

The conszar,tdistribution,Const(w) with w > 0, ,:an be s_:enas a specialcase of the geometric

distribution,where a "-"l,so Consr(_) = Gcom(l,w). The l_"fand CDF (Fig.3) of a random

v_.riable X ,,, Const(_) are then given by

5



• pmf:

• CDF:
f 0

t I

0 _.' 2_ 0 _ 2_

pm.f I'DF

Figure 3: X ,,- Const@).

Immediate transitions (firing in zero time) can be modeled by a special case of the constant

distribution where X ,,, Const(0). Fig. 4 shows the DTP representations of X ,,- Const(0) and

X ,_ Const(46).

Co_.t(46)

Figure 4: T)TP representations of constant distributions.

Discrete Uniform Distribution

Like the geometric distribution, the; di.screte m_iform distribution, Unif(a, b, _) where a, b E IN. a -"

b, and c# is a. multiple of 5. The pmf, CDF, and expectation of a random variable X ,-, Unif(a, b, ,,,)

arethen givenby

I (b-_+l) "_ if_E{a,a+l,...,b},• pmf: px(i_) = 0 otherwise.

0[ if <o ,• CDF: Fx(z)= (-_]--a+l)(b-a.+l)-' ifa_<z_/_,

I Jfx > bw.

• mean: wt._ (average delay)

Fig. 5 shows for example the pmfand CDF of X ,,_ Cnif(2,5,c,_) and Fig. 6 the DTP represen-

tations of differenl, uniform d_stribution examples.



pm.f I'DF

Figure 5: X _, Un_f(2, 5, _).

fJ_.if(o,_,_ :

......... --.--_/_,_..-
...........J/3 .......

o_f(l,3,1) :

U,_if(Z,3,96) :

Figure6: DTP representationsofuniform distributions.

4 The DDSPN Formalism

Basicdefinitionsof the DDSPN formalismand the specificationof racepoliciesareexplainedin

Sections4.1 and.4.2srespectively.Sections4.3 and 4.4 examine the DDSPN statespace and

introducethe conceptof well-definedDDSPNs, which i:needed forthe correctgenerationof the

underlyingstochasticprocessof a DD'3PN model. Finally,Section4.5proposesan algorithmfor

the reduced teachabilitygraph gent,,ationof a well-definedDDSPN from which the underlying

stochasticprocesscan be derivedand numericallyanalyzed.

4.1 B_sit: Definitions

Informally, a DDSPN is obtained by associating a discrete time r_ndom dcl;_y, a DTP, to each Ph"

transition. A state , of a DDSPN consists of two discrete c.mponents, the marking/_ and the



vector @ containing the phase for each transition:

-- (_, ¢) e INfpl × t_lrJ,

Each entry _t of _ represents the current phase of _he DTP assodated to transition t.

Definition 4.1 Formally, a DDSPN is a tuple

(P,T,D-,D+,D',>-,9,_[°],_[°],_,G, F,_[°],_-,C, w)

where:

• (P,T, D-, D+,D*, _,#,,a[°]) defines an extended PN as introduced in Section 2.

• W E T, _, C IN is the finite set of phsses of the DTP associated to transition t.

• V_ E $,Vt E T, Vd,.{ E #,G,0_,i,j) is the probability that the phase of transl-

_ion t changes from i to j in marking _ at the end of one time-step/L Hence,

E_¢, G,(.,i,j) = 1. G, specifies the one-step transition probability matrix of the

DTP of an enabled tra.nsition t in isolation. The phase of a disabled tzansitio,, does

not change in isolation: G,(_, i, i) - I if _ ¢ _'(_).

A11 combinations of possible z_ew phases for all enabled transitions must be con-

sidered when _ is changed at the end of a step of length/_. This leaAs to the

construction of the. set _(_,q_), suck that V_' c: 0(_,_), 4' is a possible combina-

tior, of phases for all transitions:

¢l:O,(.,_,,_p>o

Vlz _ 8,Vt _ g(_),Vu _ T, Vi,j _ _.,,F_,,,(_,i j) is the probability that the phase

of transition _ changes from _ when transition t fires_in marking _.

F is used for the specification of ra_e policies (see Section 4.2) for transitions.

Again, all combinations of possible new phases for a]] transitions need _o be con-

sidered when ¢ is changed by the firing of _ in _ leading to the construction of the

set, .T(L _z:b), such that V_' _ _r(t,_, _), 4' is a possible combination of phases for

all transitkms:

e_.F,,_(_,,¢.,,_.'.l>o

• Vt, £ T_ _I °] _ 4,_ is _:he initial phase of transition t at "_ime0.

• _C T × T is an acyclic post-selection priority relation.



• C C 2r is a partition of T into locally defined weight, classes: VC=, Cy E C, C=

C,=_C= N Cv = @and IJc.¢c Cz = T. Let C, be the local weight class containing

transition t E T. By sett,ng C= = T, we can model a global weight definition as in

[5].

• VlzE 8,Vt 6 £(/z),VS C C_ fl/(/_),Wtls(/_)E IR+ isthe firingweigb_for t in

marking/_when S isthesetofcandidatestofireinthesame weightclassasZ.See

the followingdescriptionforthe definltlonof a candidate.

Q

In a DDSPN, s _ransi:ionmay onlyfireina statewhere itisa candidate.For thisreason,the

enablingruleof Section2 needs to be extendedby the followingdefinition.

Definition 1.2 A transition_ E T isa candidate (tofire)in stazes = (_, _) if itis

enabled,itsphase iszero,and no othercandidatehaspost-selectionpriorityoverit(this

iswelldefinedbecause_- isacyclic):

I. eg(u)̂

2. ,_t=O ^

3. V_ E T,u _ tV u isnot a candidateins.

o

Moreover,the tiringruleofSection2 isextendedfrom markings tostatesforDDSPNs. Let C(a)

be thesetofcandidatesinstates - (#,@). Then, theprobabilitythattransitiont E C(s)ischosen

tofire,giventhatone ofthe transitionsinitsweightclassCt fires,is

v(_C(,)nC,

Note,thatinDDSPNs firingprobabilltiesareonlydefinedamong transitionsbelongingtothe same

weight class.

4.2 Race Policies

A candidatetransitiont E C(s) may firein a states =:(_¢,_) le_uiingto the new marking p' =

,t_(t,/_).Dynamic racepoliciesIf}can be then expressedfora 1:ransitionu _.T, where u # t,

accordingto/:'t._(_,.,.).Thismeans that,dependingon which transitiontflrcd,one ofthefollowiug



three race policies is applied to u which may cause its phase _ E _ to (re)sample a random deviate

¢F_E _ from the distribution F,._(_,., .):

R-R, race with resampling:

The phase of u is always resampled

{ a,(#, b, g)
,L,, = 1

0

if u E £(#'),

if u ¢ £(#') ^ ¢" - ,,

otherwise.

The resampling policy is always used when u = t or when _,, = a. In all other cases, it can still be

used, or one of the following two polities can be used instead.

R-A, race with age memory:

The phase of u is not changed by the firing of

R-E, race with enabling memory:.

The phase of u is only resampled if u becomes disabled by the firing of **

' ' I 1 ifuEe(#')A¢_ffi$,_,

t 0 otherwise.

The approach just described allows different race policies to be applied to a transition u E T

depending on wkich transition t _ T fires. Thus, it extends the modeling power by generalizing the

definition of [1], where a transition may have only a single race policy for all transition _iags.

4.3 The DDSI_N State Space

The underlying:3mchasticprocessof a DDSPN isa DTMC {(p.[k], _[_:l)]kE IN} with statespace

,9C _IPt x _Irl The time-stepof the DTMC isgivenby J,such that(p[k]@[_])E 5'isa DDSPN

state at step k a_ time kd;.

We adopt the terminology of [2] and c,_l] a state _ tangible if its sojourn time if; greater than

zero, _(.s) --=O, vanishing other.vise. Consequently, 8 consists only of tangible states.

Consider a :angible state, alkl =, (#[kl, 4#1) at time step k. At the next time step k + 1. the new

tangible state ,[k+t) is obtained by first advancing the phase, of all enabled tramitions in v_[_], then

l0



by subsequently traversing vanishing states created by the pessib]e firing of a sequence of one or

more candidate transitions. A more detailed definition of a state at ti_e step k + 1 is then given

by the following:

Let the _ew tangible state reached after any firings occurring at time step k + 1 be s [k+l].

• Let ,_[k+t]o_ (_[_.1|o, _[k+_]0) denote the first state reached from s [kl where

- no firing occurred: _[_+:]a _ #[k] and

- the time is advanced: _b[k+11°E _(/_[kl, ¢[k1).

• Let s [k+l_i m (/_[_+q/,_[_+_li). i E {1,2, ...,n.} denote the i-th state _tered after the firing of a

transition _i E C(_[k+l]i't), such that

- t_ fires: _,I_+xl_ = A4(t_,/_ls+t]i-z) and

- the race policies are applied: _k+l}i E _.(ti p[k+z]i-t, _[k+qi-1).

After n possible firings in n vanishing states s[_+t]/, i = 0, ..., n- 1, we define the first r_chable

tangible state to be s[j'+q _t s[k+q,_. Note that .#÷1]o = a[k+q if C(aF,+I]0) = O, that is, if no

firing occurs.

The previous definition describes a single state sequence s" = (slk+_]_[i E {0, 1, ...,n)) of states

leading from .dkl to s [_+_l. For better readability, let sIAl - s and, [_+_1= _. Then, the set So,z of all

state sequences from • = (_, _) to all possible ._ = (_,_) is given by

v,_°e aC/.,,,_),_ = C_,go),
'¢__ {1,2,...,,_},_' e cCz_-'.),v_ e_(_',_-_,._-'0, v= C_(t_._'-,), _,)}.

The probability of a single sta_e _,quence s" _ S,,_ is then given by
It

_,'{-_'i,"E s.., ^ _ _ ,-} = _. II (S'. _') where
/all

is the probability for a single combination of pha_, _ _0 6 _(/a, if) and where for a _ransition t i

C(_i'l), such that/_i= M(ti,_i-x)

fl _ _o¢qC(V.O_V,,(f_i-a )

is the firing probability and

F i , -i-! "i-!

is the probability for a single combination of _i _ _'(t;,/_d-t, _i-t). Fig. 7 shows a possible sequence

of state_ leading from s t.o ._ and the involved probabilities.



_t

vie .ll ..... ,_}
¢ :.t'_._ •,

l
i

[ _-- Cu,o)]

7"-. I
: _ "" -. titi_ iJa

"_. zero-time

o.,

Figure 7: A sequerlce of states s" leading from s ---s [_l to ._ = s[k+q.

4.4 Well-defined DDSPNs

The underlying stochastic process of a DDSPNAntroduced in Section 4.3 takes only the _:angible

state sp_ce and the sojourn time in a particular state into consideration. However, for the analysis

of a DDSPN, a more detailed process is needed, extending the de2rfition of Section 4.3, to take into

account the firing of transition sequences leading from one tangible state to another.

Definition 4.3 The underlying stochastic process for a DDSPN, or basic process, is

{(¢r[*!,st_])lk E IN), where, for k > O, a [k] _- (_,...,t n) E T" is the k-th sequence of

n E _ transitions to fire, at time k6, beginning from state s [_}- and reaclfing state

_[k],, = _[,], such that _[k]'-x2:,o[kl' for i = 1, ..,n. (a [°l = NULL and s [k]° is obt_fined

from _[k-1] by advancing the _ime from (k - 1)//to k_i). O

Informally, conflicts and confusions can arise in the context of contemporary fu:ing attempts

of PN transitions, which need ¢o be sequentialized, and where different sequences of (formerly

contemporazy) transition firings lead to different undefined stochastic outcomes. A DDSPN is free

of conflicts and confusions if it is well.defined, a precondition for its analysis. The general approach

of well-defined SPNs has been first introduced in [8] and we now adapt it to give a formal definition

of well.defined DDSPNs:

Definition 4.4

is, if

A DDSPN is well-defined if its basic process is completely defined, that,

Yk E N, Ya _ T',¥., E 8, Pr(a [_] = ¢y,s l_] = _}

i_ completely determined by the elements of the DDSPN. O

In practice, we are normally interested ira stochastic reward processe:s derived from tim basic

process. Without going into too much detail (see [7] k,r a discussion of the use of reward rate.., and

impulses to define measures of interest), we give the following:

12



Definition 4.5 A stochasticprocess {y[h] _ IR [ k E IN+} is _ re_;ar3 process derived

from the basic process through *,he reward structure (p, r) if it is defined as:

yIk] = o<__<k_'_"(p(_[_-*]) "_ + _'_r''(/zb_-_)),,e_L,_

where the reward rates p : LNI_'l--_ IR describe the rate at which reward is accumulated

in a particular marking and the reward impu]ses r : (T x _l_'l) _ :JRdescribe the impulse

accumulatedwhen a partic_artransitionisfiredin a particularmarking, r,,

Itisthen possibleforthe rew_rdprocessto be well-defined,even when thebasleprocessisnot.

Hem:e we need _ fuxther:

Definition4.6 A DDSPN is_ve/,l-definedwithrespectto a rewards_ruct_re(p,r)if

pr{yI l= y}

iscompletelyde_erminedby"thedements ofthe DDSPN, where _Y[_]_ IR ]k e IN+) is

the rewardprocessdefinedby applyingthe rewardstructure(p,r)to the basicprocess

ofthe DDSPN. D

Corollary 4.I

ture.[]

A well-d,:.f_nedDDSPN iswell-def_aedwithrespecttoany rewardstruc-

The conceptofwell-definedSPNs and tbe correbpondiugtesZalgorithmhave been exten._ively

discussedin [8]where more detailsa_udexamples can bc found,

4.5 Reduced B.eachabilityGraph Generation

Inthissectionwe willproposean algorithmfortheconstructionofthe (finite)reducedteachability

graph(RRG) and forthecalculationoftheimpulserewardsofa well-definedDDSPN. The algorithm

alsotestswhether the DDSPN i:_well-defined.The overhead forthistes_issmall,becauseitis

ba_edon the statespaceofthe RRG and on the [mpul._ereward measures.Rate rewardsarenot

affectedby convictsand confusions,sincethey are calculatedbeforeany t3:ansitlonfirln_occurs.

Therefore,the calculationofraterewardsisomitted,forthe sakeofbetterreadability,but itcan

be easilyincludedintothe _tlgorithm.Formally,the algorithmisgiven:

• a DDSPN (P,T,D',D+,D°,>-,g.p[°],¢[°],¢,G,F,¢[°],_,C,w), and

13

--. : L !|| ql II .... _ ------



• a set of impulse reward ftm.ctions M = {r _, ...,r[MI},

where r_'*(#) E IR is the impulse reward obtained when firing transition t in marking _,

according to the rn-th reward structure. 1 < m < }M[.

If the DDSPN is well-defined, the algorithm computes the underlying tangible state sp_e $

and all state transitions _'a = U,_$ 7_,, such that a single path set 7_, contains the zero-time state

transitions starting from state :,. Hence, given that a tangible state ._ is reachable from a state s,

there is a tuple (7,, r_) E _ ¢ontaialng the corresponding state transition probability r_ E (0,1] and

a vector 7_ = (7_, ...,._MI) E IRI_t, which stores the accumulated reward v_lue -_[', for every impulse

reward function r '_ e M. A single tuple ('yz, y_) E "Po also represents the aggregated individual

probabilities and accumulated impulse rewards of possible multiple paths along vanlsh]ng states

leading from $ to ._.

The nonzero entries of the one-step transition prob. hility matrix P for the underlying DTMC

of a DDSPN are then given by: V,*,,_ E ,Y, VP, e _O._,V('rs, t2_) E "P, : P,,i - _. If the expected

accumulated impulse rewards up to time kS, E[Y [k] [ s [k] = s] are known, the expected acca_mulated

impulses up to ¢,ime (/c + I)$ are given by Vk E Eq, Vs, $ E S, VP, E _o_ :

E[Y rk+_][(a[kl= _^ ,[_'+_]= Z)] - E[Y [_'][s[k]= s]+ _ 7s if3(_, _;_)E _o,

[ 0 otherwise.

Standard numerical methods (power method, SOR) can be employed for %he tran,ient or stationary

solution o_ the processes of interest.

If the DDSPN is not well-defined, the algorithm issues au error message and needs to be restarted

after a conflict or confusion _ituation h,_ bee_ resolved by the means of priority or weight definitions.

See [8] for a more detailed discu.,;sion of non-well-defined DDSPNs and their implications.

Brieffly, the algorithm consists of the procedure "g_;nerateRRG" in Fig. 8, where the time is

advanced in a given tangible =_tate ._[_]= s leading to $[_+_10= _0, and of the procedure "traverse"

in Pig. 10, where subsequent vanishing _tates are recursively traversed starting from ,[_+=]o =: ]o

until tangible states sl_+_] = 5 are reachei Three. types of parameters exist: call by value (in), call

by reference (out),and e_ll by w:lue.refereace (inout).

The algorithm is exercised with the call _generateRRC(S, _o,),,. The set S "°_'_ contain, the

t_ngible s_ates which h_.ve not yet b,en visited. It is assumed that the inki_l state to be visited

(_[0) 0[o]) is tangible. In care of a wanishing initial _tate v, only the initialization of the algorithm

needs to be slightly adjusted by

• first ge_aerating the set $y'°', the initial tanfible states reachable fi'om v, and then
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• by storingthe stare transition probabilities of reaching .S_"t from v as the initial sojourn

probabilities in the underlying stoch_tic process (a DTMC) of the DDSPN.

The initial probabilities are only relevant if a subsequent transient analysis of the DTMC is going

to be I _.rformed. For the stationary analysis of the (ergodic) DTMC, it is sufficient to calculat¢ the

first reachable tangible state as the initial state; no initial probabilities are then needed.

procedure generateR_.G( out: 3, "Ps )

s=O;_s=O;

s._, _-(_Iol,#);

while $'_' _ 0 do

choose a state s ----(g, _) from $_t.,

$r=, = S_, \ {S};

P,=O;

foreach ._o E g(#,_) do

_° = 0,, _°);

9 = I'I,_2-G,(_,,¢,,,,_o);

ifC(._°) = _ then # _o ISTANGIBLE

if._0_ $ then

s = $ u {_o}; ,..¢,_,,,= ,S,.,=,u {_o};

_o= {(_o,g)I"t_= 0};

else # _ IS VANISHING

traverse(._o;$, $,_,; _);

"P.= =..if,v-(P,, _o);

Ps = _'_u'P,;

end procedure

Figure8: Generationofthe reducedteachabilitygraph.

Fig.9 outlinestheexecutionof"gencrateRRG_,The while-loopoftheprocedurevisitsallstates

of$"_' and calculatesthe setof paths _a, accumulatedforeveryiterationin_a, foreach state

, E $_':'LThe for-loopadvancesthe timeforone step6by generating,vdtheveryiteration,thenew

state_0.dependingon itspossiblecombinationofnextphases_o E _(/_,4))withit.-corresponding

probabilityg. More.over,forevery._,itgeneratesthe setofpaths 7)oleadingfrom _ to tangible

15



statesvia _eand unifiesthem afterwardsinthe path set_Pjcoveringallexistingstatetransitions

originatingins.Hence,if50 istangible,itisadded to thesetsoftangiblestates$ and ,q_*_,ifnot

alreadythere,and a singleinltlaldirectpath _P_to50withprobabilityg iscreatedwithno impulse

rewards,sinceno transitionfiringleadto 50.:__ isvanishing,the call"traverse(_;S, S_; _)"

computes thepath set_ from which :p0isafterwardsobtainedby multiplyingallimpulserewards

and path prol_abilitlesof:Pj0withthe probabilityg ofreaching_ofrom s.

PJ© _ traverse() f

Figure9: Executionof "generateRRG _.

The functionunify-(7_o,7_) unifiestwo differentpath sets'P4and "P_,whose originliesinthe

same states,so thatmultiplepathsreachingthe same tangiblestateg are merged, guaranteeing

that V(_z,r_),(7_,,y/i, ) E "Po,._ ffi _'=_(7_,17._) -- (7._,r/_,). Therefore, the intersection _p is first

constructed where paths of both sets ('Yi, r/_) E 7_e and (.)_-,y_) E 7_] going to the same 5 are

aggregate:dby summing the correspondingaccumulatedimpulserewardsand path prol)abi[ities:

= U + +

Then, all paths cf _° and 9" going to different tangible states are unified together with the inter-

section Po._ into the set "P_:

U u 92

which is also the value returned by the function.

Fig. 11 outlines the execution of "traversd'. The first for-loop of the procedure; in Fig. 10

partitions all candid,_te transitions of P'_ into sets of candidate transitions _r belonging to the

same weight class C=. The secor_d for-.loop fires all transitiom ,:,fa particular set (_=_ so that, with

every iteration, a :_ingle caudidate transition t i _ ¢_= is fired in marking/_;'_ according to it_ firing
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procedure traverse( in: _-1 _- (_'-1,_-i); inout:

_;-,= 0;

foreach C= E C do

foreach tie _'=do # FIRES:INGLECANDIDATE

_;= _-_ - D:.,.(__-_)+ D..,,(_),

f:= 6,.je.(#_-_).

foreach _i 6 .T(_i,/_i-1,_i-_)do

_ = (_,_);

ifC(__)--{_then _ }its"rANOlSLE

if.__ _qthen

# APPLY RACE POLICIES

S = Su (P}; ,S'_'' = s '_' u {._};

P_,-,= {(_s./_F_)lw _ O,...,l_ILv,TM = _;_(#_-_)f_r_);

else # P _sVA._S_tN_

_.-, = U_.,_,)_,, {(_L_d_ _)Ivr_ _ (_,..., IMl},
71_ = (.¢+ r_,(f_-'),_,)f'F_);

if_#,-_ : _ then P_,-_ : _._;

else if _)_,-_ _ _P_'.: then stop; # ERROR, DDSPN _OT W_LL-DEPINED

end procedure

Figure10:Traverslngrecursivelyvanishing_tates.

probability fi leading to _. For each firing transition t _the third for-loop sppli_ the corresponding

ra_epoliciesto allphasesof _'_ and generates,with everyiteration,the.•new state,_ = (/_,_)

withprobabilityF _depending on the possiblecombinationofnext ph_ _# e _'(t_,_;-_,_']).

AnMogously to thefor-loopof"generateRRG", itfirstgeneratesthe setofpaths7)_._le_iingfrom

._'-_ to tangibles_atesvia ._,forevcry3i,and then itunifiesthem in the path set_._ covering

allexistingst_tetransitionsinitiatedby firingtransitionsof _# in P-_. Again, if8iistangible

_terminatingrecurs]recalls),itisadded to the setsoftan_ble statesS and _q'_'t_,ifnot _Iready

there.Moreover,a singleinitialdirectpath 'P_,._withprobability/_F _(Pr{/__)Pr{c_'))forreach]r_g

the.ta.ngible._iscre_tedtogetherwith instantaneousimpulsercwardsgainedby the firingof_ in
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_-z leading to _i. If 7 _'is vanishing, the subsequently reachable states ar_ explored by the recursive

call "traverse(._i; S, $_t; _v)" which computes the path set _, (assuming that the vanishing

re.schabi[ity graph created from ._i is acyclic, finite, and that no conflict or confusion occurred).

7_],__ is then obtained from _, by adding the instantaneous impose rewards of *_ to _s_. so that

the probability of • pa_icular path and of the accumulated impulse rewards equals to r/= fiFirl5

for reaching a tangible state g from ._-1 via 3i.

:: _ -,P-#+* _ '" "P;-_ _-

Figure 11: Execution of "traverse".

Cortflicts and confusions exhibit a non-deterministic behavior which can occur in DDSPNs only

in a vanishing state _i-t when multiple candidate transitions _ E _2(P-_) attempt 'to fire in zero-

time leading to tangible states _ with different stochastic outcomes. Indeed, the DDSPN evolu:ion

during instants of time where, there is no firing is completdy determined by the assumption of a

race behavior.

It is possible to resolve conflicts and confusions by employing one of the following two methods.

Priorities can be ddlned to prevent ¢onfli ¢ting transitions from becomiug simultaneous _ndidates,

hence from attempting to fire at the same time. The second method groups eaudi.date transi-

tions involved in conflicts or confusions into the same weight class C_, so that contemporary firing

attempts are resolved probabilistically by the individual firing probability/_ for each candidate

t _ E 0._ where _,¢g. )'i :_. 1. Then, candidate transitions belonging to different weight classes are

free of conflict,_ and confusions, and they reach from all vanishing states ._i-t the same tangible

states with the same probabilities and with the same accumulated impulse rewards, regardless of

the order in whidl they are fired (a necessary condition for the absence of conflicts and confusions),

suchthatVC_ _ C :_, = _,-_.

Ifa vzmi._]fingstateisencounteredwith at lea.sttwo differentpaths se':swhere _'__ # _)_

the DDSPN is t_ot well-&,4ined with regard to the particular reward processes of interest. The
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modelermustthen apply one of the following actions to transitions of £7_ and C_ before restarting

the algorithm, to remove coniticrs or confusions:

• Specify pro-selection priorities disabling a conflicting transition before the advance of time.

• Specify post-selection priorities, thus forcing a particular sequence for contemporary £ring

attempts.

• Merge the c_rresponding weight-classes of conflicting transitions and defLne appropriate weights

for them.

5 State Space Reduction

In Section 4.5, it has been shown how the one-step transi'_ion probability matrix P of the underlying

(finite) DTMC of a DDSPN is computed. In case of an irreducible DTMC, the stationary solution is

obtained by solving the following system of linear equations with standard techniques (Ga.uss-Seidel,

SOR): r = _P and _ _r, = 1.

Since. P i._ usually a sparse matrix, sparse storage schemes should be employed. Measures of

interest are then derived from the stationary probability distribution vector _.

A considerable reduction of the state space can be achieved if it is possible to advance the phases

of enabled transitions during the state space generat3on for more than just one time-step 8 until

a probabilisdc split or a phase equal to zero (van_sMng state) is reached. This is the case when

tangible state_ are encountered where the DTPs of the enabled transitions have a unit-step _ which

is a mull;iple of the basic underlying time-step 6_a condition often met by deterministic transhlons.

Hence, the a_gori_hm for the RRG get,oration is slightly modified to test whether the next maximum

z pha_e advancements of all enabled traasitions of a tangible state of 8_" have probabilities equal

to one. Consider a tangible state _Ik] = (_[kl, ¢[_]) at time k6 from which the following sequence of'

states is initiated

_- = ( I,l  tk÷,l) I i e {1,2,...,x),x > 1),
so th_tt:

Since no change of marki1_g and no transition firing occurred, the states of s" were generated solely

by phas, adv_nceme_ts of e,_nabled transitions whose phase transition probabilities equal to one.

hence,
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Therefore, it becomes possible to advance directly from s[ k! to s [k+'] leax, ing ou_ the intermediate

tangible states {s[ k+'_[i E (1,2, ..., x - 1}} while adding their individual holding times of h,_k+.l = 5

to the holding time of s [kl, so that h,l_] = x_. If the last state of the sequence is vanishing, s[k÷*l°

isreachedinsteadofs[_+_3.

The underlyingstochasticprocessisthen a discretetimesemi-Markovprocesswhere P describes

an embedded DTMC. The holdingtimesineach stateareno longerequalto 8,but aregivenby the

holdingtimevectorh. The stationarysolutioncan be oT)tainedemployingthefollov',_gwell-known

method forsemi-Markov processes[9]:We firstsolvethe system oflinearequations_/- 7P and

_ 7_- I forthe embedded stationaryprobabilities'7;then,we rescale_ usingthe holdingtimes,

Vs E S :")/= % •h,;finally,we normalizethe rescaledprobabilities_,'and ob_alnthe stationary
I

probabilitydistribution:_r_ _.

In generalthe sizeof the statespace depends on the sizeof the basicunderlyingtime-step6

and on thenumber ofphasesoffiringtime distributions(DTPs) spedfiedforthe timed transitions

ofa DDSPN model. Ifembedding isused,the sizeofthe statespacedepends,inaddition,on the

maximum possiblephase advancementsof allenabledtransitionsintangiblestates.

6 Example

Thissectionillustrat,esthemodelingpower ofDDSPNs by prese_tingan example contsir_ngseveral

deterraJnisticallytimed a_tlvities.Considerthe processingstationofan automated manufac'ctadng

system where raw partsarriveat constanttime intervals.A machine toolprocesseseach r_w part

fora constanttimeperiod.The toolwears offand needs_obe z_placedaftera stochasticallytimed

delaywhose valuedepends on the toolqualityand on the materialof the processedparts.The

¢ime delayforthe replacementisconstant.The processingstationcan be then characterizedby a

D/D/I/K queueingsystemwhere theservicestation(tool)issubjecttostochasticfailttTes(we_rout)

and determ_nistic_llytimed repairs(toolreplacement).Fig. 12 shows the correspondingDDSPN

model. Raw parts,representedby 1;okens,arrivewith the firingof the deterministictransition

arrivin 9 and wait for service, on pl_e WAIT until the service station is empty and operabl_., A

singletokenon placeIDLESERVER and the immediatetransitionenterservicepermitonlyone part

ata timetoenterthe servicestationwhich consistsoftheplaceSERVICE and ofthedeterministic

transitionserve.The-firingof servestandsforthe completionof the processingof a singlepart.

The f_dlureand repairof _he servicestationare representedby the geometricand deterministic

transitions failure and ,'¢pair, respectively.

We consMer a syst_:m with /( = 50 parts, a constant deterministic arrival rate of T_o."and a
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_ir_ _c

Figure 12".D/DII/K queueing system with failure and repaL-.

constant deterministi_ repair rate of _'_a" The deterministic service rate is varied from _ to _ and

the geometric failure rate is varied from _o, to i0"_." The basic underlying time-step of the model

equals to Is.

The me_sure of interest of the station_ry solution is the average number of waiting raw parts

E_#WAIT} on place WAlT depending on the varying service and failure rates. The goal of our

perfo.m_mc_ evaluation is to determine which minimum performance of the server, in terms of speed

(service rate) and dependability (failure rate), suffices to achieve a desired average percentage of

waiting raw parts. Fig. I3 shows the corresponding curves, where E{#WAIT} is plotted vs. the

firing rates of transition serve and transition/o, il_re.

_'.3 _--

...........

le, l

a) 2D
b) 3D

Figure 13: Mcan n_unber of waiting raw parts (in rate and failure rate.

The state _.psce of the DDSPN consists of 101 tangible markings. Depen ding on the deterministic

service rate 5,930 up to 125,153 tangible :tat_ have been generated. However, employiu6 the

embeddin_ technique for the stal:ionary solution of this particular model leads ¢o a state space

reduction of 86.4
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7 Conclusion

The resultsof[14],[5],and [8]have been combined introducingthe DDSPN formalismwhere deter-

ministicand stochastic_ringtimesoftransitionscan be mixed withoutstructuralrestrictionswhile

providingintegrateda,:comaticconflictand confusiondetectionon a discretetime scale.

A new solutionmethod combining [5]and [8]and a previouslynot availablealgorithmfor

mapping a DDSPN onto itsunderlyingstochasticprocesshave been presentedfrom which a direct

implementationcan follow.Thus, a new practicalformalismin thefieldofperformanceevaluation

has been enabledwith new featuresbased on discretetimeas demonstratedfora typicalqueueing

applicationexample.

Considerablestatespace,reductioncan be achievedfora given DDSPN model by carefully

choosingtimingparameters and,more importantly,by means ofembedding. Even so,the DDSPN

formalismstillleadstoa largestatespacedue tothe additionalphase components inthe state.
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time _ according to t_bitrary firing flnte_ that can be represented _ the time to absorption in a finite absorbinL.,
discrete time M_rhov chain (DTMC). r.xponenfia_y distributed firing times aze then approximated &r_itrarily we]J by
geometric dbtfibution_. Der_md,_lc firing timee are a special cue of the g_metrL(, di._tribution. The un¢letlying
mtochu,_tic proeees of a DDSPN _n then also a D'I_{C, from which the tr_sicm a_d _ationexy solution c_n be
obtained by s_,_nclard t_hniq,zes. A comp_hensive algorithm and some _tate _pac_ teductiun _echniques for the
analysis of DDSPt_s _ze iE_entcd eompr_Jing the automatic de, action of co,_ct,_ _nd cc_nfusions,which remove_ a
m_jo_ ob,t_u-],, for th,_ _nalysi._ of die,creEsetime modeJs.
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